掘金 阅读 ( ) • 2024-05-08 11:53

RAG优化技巧|7大挑战与解決方式|提高你的LLM

在当今快速发展的人工智能领域,大型语言模型(LLM)已经成为无处不在的技术,它们不仅改变了我们与机器交流的方式,还在各行各业中发挥着革命性的影响。

然而,尽管LLM + RAG的能力已经让人惊叹,但我们在使用RAG优化LLM的过程中,还是会遇到许多挑战和困难,包括但不限于检索器返回不准确或不相关的数据,并且基于错误或过时信息生成答案。因此本文旨在提出RAG常见的7大挑战,并附带各自相应的优化方案,期望能够帮助我们改善RAG。

下图展示了RAG系统的两个主要流程:检索和查询;红色方框代表可能会遇到的挑战点,主要有7项:

  1. Missing Content: 缺失內容
  2. Missed Top Ranked: 错误排序內容,导致正确答案沒有被成功 Retrieve
  3. Not in Context: 上限文限制,导致正确答案沒有被采用
  4. Wrong Format: 格式错误
  5. Incomplete: 回答不全面
  6. Not Extracted: 未能检索信息
  7. Incorrect Specificity: 不合适的详细回答

img

这些挑战不仅关系到系统的可用性和准确性,还直接影响到用户对技术的信任度。为了解决这些问题,以下是针对每个挑战的优化方案:

缺失内容(Missing Content)

RAG 系统面对的问题无法从现有文件中得到答案时,就会出现这种情况。在最佳情况下,我们希望 RAG 系统直接回答「我不知道」。然而,实际上RAG 系统常常会编造或错误回答问题。

针对这个问题,目前有两大解决策略:

1. 数据清理

俗话说"吃什么、吐什么"。原始数据质量对信息处理系统的准确性至关重要,若输入数据错误或矛盾,或者预处理步骤不当,则无论检索增强生成(RAG)系统有多先进,也无法从混乱数据中提取有价值信息。这意味着我们必须在数据源选择、数据清洗、预处理等环节投入资源和技术,以确保输入数据尽可能准确和一致。这个策略不仅适用于本文讨论的问题,也适用于所有数据处理流程中,数据质量始终是关键。

2. prompt 工程

在知识库缺乏相关信息、导致系统可能给出看似合理但实际上错误答案的情况下,使用提示工程是一个非常有帮助的解决方式。例如通过设定提示:“如果你对答案不确定,就直接告诉我你不知道”,如此可以鼓励模型采取更谨慎和诚实的回应态度,从而避免误导用户。虽然不能保证系统回答的绝对准确性,但通过这样的提示, 确实能提高回答品质。

未命中排名靠前的内容(Missed Top Ranked)

这个挑战主要在于“答案在文件中,但由于排名靠前而未能提供给用户”。理论上,检索系统会为每个文档分配一个排名,此排名将决定其在后续处理中的使用程度。然而,在实际操作中,受限于性能和资源,通常只有排名最高的前 K 个文档会被选取并展示给用户。这里的 K 是基于性能考虑的参数。

针对该问题,存在两种解决方式:

1. 调整参数以优化搜索效果

该部分提出了两个方面调整以增加 RAG 效率和准确性:chunk_size

如果要直接在 langchain 调整块大小,请使用以下代码:

 from langchain.text_splitter import RecursiveCharacterTextSplitter
 ​
 text_splitter = RecursiveCharacterTextSplitter(chunk_size=100)
 all_splits = text_splitter.split_documents(PDF_data)

k 值涉及到检索器应该返回多少个答案,我们可以选择返回更多的答案,以确保正确答案不会被 LLM 忽略:

 retriever = vectordb.as_retriever(search_kwargs={"k": 8})
 ​
 qa = RetrievalQA.from_chain_type(
     llm=llm, 
     chain_type="stuff", 
     retriever=retriever, 
     verbose=True
 )

2. 优化检索文档的排序

在将检索到的文件送到LLM前,先对文件进行最佳化排序,能大幅提升RAG系统的效能,因为初始排序无法反映件与查询的真实相关性。这系列的论文可以看Liu et al.2023,论文中指出,将最相似的文档放在开头或结尾时,效能通常最高,因为模型容易迷失在中间。

langchain中,我们可以使用langchain原生的Long-Context ReorderCohere Reranker来实现,请参考官方文件。

2.1 Long-Context Reorder

 retriever = vectordb.as_retriever(search_kwargs={"k": 8})
 query = "What can you tell me about the Celtics?"
 ​
 # 按相关度分数排序获取相关文档
 docs = retriever.get_relevant_documents(query)
 ​
 # 重新排序文件:
 # 列表中不太相关的文件将排在中间位置。开始/结尾处的相关要素。
 reordering = LongContextReorder()
 reordered_docs = reordering.transform_documents(docs)
 ​
 # 确认前后共有4份相关文件。
 print(reordered_docs)

2.2 Cohere Reranker

 from langchain.retrievers import ContextualCompressionRetriever
 from langchain.retrievers.document_compressors import CohereRerank
 from langchain_community.llms import Cohere
 ​
 retriever = vectordb.as_retriever(search_kwargs={"k": 8})
 query = "What can you tell me about the Celtics?"
 ​
 # 按相关性得分排序以获取相关文件
 docs = retriever.get_relevant_documents(query)
 ​
 # 使用Cohere重新排名端点来对返回的结果进行重新排名
 llm = Cohere(temperature=0)
 compressor = CohereRerank()
 compression_retriever = ContextualCompressionRetriever(
     base_compressor=compressor, base_retriever=retriever
 )
 ​
 compressed_docs = compression_retriever.get_relevant_documents(
     "What did the president say about Ketanji Jackson Brown"
 )
 pretty_print_docs(compressed_docs)

Not in Context(上下文限制)

论文有提到:「答案所在的文档虽从数据库中检索出来,但并未包含在生成答案的上下文中。」这种情况通常发生在返回的文档太多,需透过一个整合过程来提取答案的情境。 为了解决这个问题,扩大上下文的处理范围是一种方式,此外也建议可以尝试以下方法:

1.调整检索策略

Langchain中提供许多检索的方法,确保我们在RAG中能拿到最符合问题的文件,详细的列表可以参考官网,其中包含:

  1. Vectorstore
  2. ParentDocument
  3. Multi Vector
  4. Self Query
  5. Contextual Compression
  6. Time-Weighted Vectorstore
  7. Multi-Query Retriever
  8. Ensemble
  9. Long-Context Reorder

这些策略为我们提供了一种灵活多样的方式,能够根据不同的检索需求和应用场景进行调整,以此提升检索过程中的准确性和效率。

2. 微调 embedding

Fine-tuning 嵌入模型针对特定任务是提高检索准确性的有效方法。如果我们的 embedding model 是开源的,可以使用 LlamaIndex 功能进行实现。与 Langchian 相比,LlamaIndex 是为了检索数据而优化的软件包,在这方面提供了详细教程,而 Langchian 则没有相应功能。

以下示范如何设置微调框架、执行微调操作并获取经过微调的模型,也可参考官方文档

 finetune_engine = SentenceTransformersFinetuneEngine(
     train_dataset,
     model_id="BAAI/bge-small-en",
     model_output_path="test_model",
     val_dataset=val_dataset,
 )
 ​
 finetune_engine.finetune()
 ​
 embed_model = finetune_engine.get_finetuned_model()

格式错误

当我们使用prompt要求LLM以特定格式(如表格或列表)提取信息,但却被LLM忽略时,可以尝试以下3种解决策略:

1. 改进prompt

我们可以采用以下策略来改进 prompt,解决这个问题:

A.明确说明指令

B.简化请求并使用关键字

C.提供示例

D.采用迭代提示,提出后续问题

2. 输出解析器

输出解析器负责获取LLM的输出,并将其转换为更合适的格式,因此当我们希望使用LLM生成任何形式的结构化数据时,这非常有用。它主要在以下方面帮助确保获得期望的输出:

A. 为任何提示/查询提供格式化指令

B. 对大语言模型的输出进行 解析

Langchain提供了许多不同类型Output Parsers的流接口,以下是示范代码,具体细节请参阅官方文档

 from langchain.output_parsers import PydanticOutputParser
 from langchain.prompts import PromptTemplate
 from langchain_core.pydantic_v1 import BaseModel, Field, validator
 from langchain_openai import OpenAI
 ​
 model = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0.0)
 ​
 ​
 # 定义您想要的数据结构。
 class Joke(BaseModel):
     setup: str = Field(description="question to set up a joke")
     punchline: str = Field(description="answer to resolve the joke")
 ​
     # 可以通过 Pydantic 轻松添加自定义验证逻辑。
     @validator("setup")
     def question_ends_with_question_mark(cls, field):
         if field[-1] != "?":
             raise ValueError("Badly formed question!")
         return field
 ​
 ​
 # 设置一个解析器 + 将指令注入到提示模板中。
 parser = PydanticOutputParser(pydantic_object=Joke)
 ​
 prompt = PromptTemplate(
     template="Answer the user query.\n{format_instructions}\n{query}\n",
     input_variables=["query"],
     partial_variables={"format_instructions": parser.get_format_instructions()},
 )
 ​
 # And a query intended to prompt a language model to populate the data structure.
 prompt_and_model = prompt | model
 output = prompt_and_model.invoke({"query": "Tell me a joke."})
 parser.invoke(output)

3. Pydantic parser

Pydantic 是一个多功能框架,它能够将输入的文本字符串转化为结构化的Pydantic物件。Langchain有提供此功能,归类在Output Parsers中,以下是示范code,可以参考官方文件

 from typing import List
 ​
 from langchain.output_parsers import PydanticOutputParser
 from langchain.prompts import PromptTemplate
 from langchain_core.pydantic_v1 import BaseModel, Field, validator
 from langchain_openai import ChatOpenAI
 ​
 model = ChatOpenAI(temperature=0)
 ​
 # 定义你期望的数据结构。
 class Joke(BaseModel):
     setup: str = Field(description="question to set up a joke")
     punchline: str = Field(description="answer to resolve the joke")
 ​
     # 可以很容易地使用 Pydantic 添加自定义验证逻辑。
     @validator("setup")
     def question_ends_with_question_mark(cls, field):
         if field[-1] != "?":
             raise ValueError("Badly formed question!")
         return field
 ​
 ​
 # 一个用来促使语言模型填充数据结构的查询意图。
 joke_query = "Tell me a joke."
 ​
 # 设置一个解析器+将指令注入到提示模板中。
 parser = PydanticOutputParser(pydantic_object=Joke)
 ​
 prompt = PromptTemplate(
     template="Answer the user query.\n{format_instructions}\n{query}\n",
     input_variables=["query"],
     partial_variables={"format_instructions": parser.get_format_instructions()},
 )
 ​
 chain = prompt | model | parser
 ​
 chain.invoke({"query": joke_query})

回答不完整

有时候 LLM 的回答并不完全错误,但会遗漏了一些细节。这些细节虽然在上下文中有所体现,但并未被充分呈现出来。例如,如果有人询问“文档A、B和C主要讨论了哪些方面?”对于每个文档分别提问可能会更加适合,这样可以确保获得更详细的答案。

查询转换

提高 RAG 系统效能的一个策略是添加一层查询理解层,也就是在实际进行检索前,先进行一系列的 Query Rewriting。具体而言,我们可以采用以下四种转换方法:

1.1 路由:在不改变原始查询的基础上,识别并导向相关的工具子集,并将这些工具确定为处理该查询的首选。

1.2 查询重写:在保留选定工具的同时,通过多种方式重构查询语句,以便跨相同的工具集进行应用。

1.3 子问题:将原查询拆解为若干个更小的问题,每个问题都针对特定的工具进程定向,这些工具是根据它们的元数据来选择。

1.4 ReAct 代理选择器:根据原始查询判断最适用的工作,并为在该工作上运行而特别构造了查询。

Llamaindex已经为这个问题整理出了一系列方便操作的功能,请查看官方文件;而Langchain的大部分功能则散落在Templates中,例如HyDE的实现和论文内容。以下是使用Langchain进行HyDE的示例:

 from langchain.llms import OpenAI
 from langchain.embeddings import OpenAIEmbeddings
 from langchain.chains import LLMChain, HypotheticalDocumentEmbedder
 from langchain.prompts import PromptTemplate
 ​
 base_embeddings = OpenAIEmbeddings()
 llm = OpenAI()
 ​
 # Load with `web_search` prompt
 embeddings = HypotheticalDocumentEmbedder.from_llm(llm, base_embeddings, "web_search")
 ​
 # 现在我们可以将其用作任何嵌入类!
 result = embeddings.embed_query("Where is the Taj Mahal?")

Not Extracted(未能检索信息)

RAG系统面对众多信息时,往往难以准确提取出所需的答案,关键信息的遗漏降低了回答的质量。研究显示,这种情况通常发生在上下文中存在过多干扰或矛盾信息时。 以下是针对这一问题提出的三种解决策略:

1. 数据清洗

数据的质量直接影响到检索的效果,这个痛点再次突显了优质数据的重要性。在责备你的 RAG 系统之前,请确保你已经投入足够的精力去清洗数据。

2. 信息压缩

提示信息压缩技术在长上下文场景下,首次由 LongLLMLingua 研究项目提出,并已在 LlamaIndex 中得到应用,相对 Langchain 的资源则较零散。现在,我们可以将 LongLLMLingua 作为节点后处理器来实施,这一步会在检索后对上下文进行压缩,然后再送入 LLM 处理。

img

以下是在 LlamaIndex 中使用 LongLLMLingua 的示范,其他细节可以参考官方文件

 from llama_index.query_engine import RetrieverQueryEngine
 from llama_index.response_synthesizers import CompactAndRefine
 from llama_index.postprocessor import LongLLMLinguaPostprocessor
 from llama_index.schema import QueryBundle
 ​
 node_postprocessor = LongLLMLinguaPostprocessor(
     instruction_str="Given the context, please answer the final question",
     target_token=300,
     rank_method="longllmlingua",
     additional_compress_kwargs={
         "condition_compare": True,
         "condition_in_question": "after",
         "context_budget": "+100",
         "reorder_context": "sort",  # enable document reorder
     },
 )
 ​
 retrieved_nodes = retriever.retrieve(query_str)
 synthesizer = CompactAndRefine()
 ​
 ## 梳理 RetrieverQueryEngine 中的步骤,以确保清晰易懂。
 ## 后处理(压缩),合成
 new_retrieved_nodes = node_postprocessor.postprocess_nodes(
     retrieved_nodes, query_bundle=QueryBundle(query_str=query_str)
 )
 ​
 print("\n\n".join([n.get_content() for n in new_retrieved_nodes]))
 ​
 response = synthesizer.synthesize(query_str, new_retrieved_nodes)

3. LongContextReorder

这在第二个挑战,Missed Top Ranked中有提到,为了解决LLM在文件中间会有「迷失」的问题,它通过重新排序检索到的节点来优化处理,特别适用于需要处理大量顶级结果的情形。细节示范可以参考上面的内容。

不正确的具体性(Incorrect Specificity)

有时,LLM 的回答可能不够详细或具体,用户可能需要进行多次追问才能得到清晰的解答。这些答案可能过于笼统,无法有效满足用户的实际需求。

因此,我们需要采取更高级的检索策略来寻找解决方案。

当我们发现回答缺乏期望的详细程度时,通过优化检索策略可以显著提升信息获取的准确性。LlamaIndex 提供了许多高级检索技巧,而Langchain 在这方面资源较少。以下是一些在 LlamaIndex 中能够有效缓解此类问题的高级检索技巧:

总结

本文探讨了使用 RAG 技术时可能面临的七大挑战,并针对每个挑战提出了具体的优化方案,以提升系统准确性和用户体验。

  • 缺失内容:解决方案包括数据清理和提示工程,确保输入数据的质量并引导模型更准确地回答问题。
  • 未识别出的最高排名:可通过调整检索参数和优化文件排序来解决,以确保向用户呈现最相关的信息。
  • 背景不足:扩大处理范围和调整检索策略至关重要,以包含更广泛的相关信息。
  • 格式错误:可以通过改进提示、使用输出解析器和 Pydantic 解析器实现,有助于按照用户期望的格式获取信息。
  • 不完整部分:可通过查询转换来解决,确保全面理解问题并作出回应。
  • 未提取部分:数据清洗、消息压缩和 LongContextReorder 是有效的解决策略。
  • 特定性不正确:可以通过更精细化的检索策略如 Auto Merging Retriever、元数据替换等技巧来解决问题,并进一步提高信息查找精度。

通过对 RAG 系统挑战的深入分析和优化,我们不仅可以提升LLM的准确性和可靠性,还能大幅提高用户对技术的信任度和满意度。

希望这篇能帮助我们改善我们的 RAG 系统。