知乎热榜 ( ) • 2024-03-31 11:24
洗芝溪的回答

当年非富勒烯没有出来以前,长达二十多年里,所有人都认为12%是有机光伏的效率极限。钙钛矿没有出来以前,所有人都认为拉单晶一定是太阳电池的最优解。

所以材料科学也是科学,不是工程,没有办法通过计划一步一步实施,它总是跳跃式发展的。一个新材料往往是突然就出现在世界的某个角落,然后改变过去的所有认知。

这是因为,任何物理现象,当它和温度扯上关系时,总会出现各种奇奇怪怪的不可能三角。这或许是一种自然的约束吧。

比如光伏电池,既要吸光好,又要导电好,还要结构稳定,这就是不可能三角。硅的迁移率高、稳定,却是间接带隙。钙钛矿什么都好,但是不稳定。材料科学的本质,就是把这个不可能三角不断变成可能的过程。

从材料的选择面上,其实超导是优于光伏的。翻开元素周期表,一大堆具有超导相的元素存在,但具有光伏效应的元素有几个?

但正因为传统超导的大量存在,就会依据它们总结出一些所谓的“经验”来。比如寻找超导定律有一条就说,要远离氧化物。因为的确,元素超导一旦被氧化就会失超,就有了这条看似完美的经验。再比如要远离铁磁元素,因为传统超导都没有磁性,磁性会破坏超导相。

这些在新材料诞生之前颠扑不破的金科玉律,在铜基和铁基超导诞生之后,成了大家日常用来调侃的笑话。

所以,如果要说室温超导难在哪的话,我的观点是难在了这些固化的经验,以及这些经验背后形成的强大惯性与利益。

在光伏领域,人们早就知道,单晶硅比多晶硅效率高,为什么人们不会去执着于拉单晶呢?商业成本的考虑是一方面,另一方面则是从一开始就有许多与硅并驾齐驱的其它化合物体系。所以经验没有成为定式。

材料科学发展的大趋势是走向越来越复杂的多元化合物。元素与二元化合物中许多的所谓成熟经验,在复杂体系中不再适用,甚至会成为障碍。

核心问题还是温度。热力学所有关于温度的定义都是基于单质理想气体,哪怕是二元化合物的水,能均分定理的偏差都超过误差能接受的范围。这就导致温度越高,各种奇怪的不可能三角会反复出现。

以导电性为例,它主要是由载流子浓度和迁移率来决定。而由于从单质硅那里得来的经验,提高载流子浓度就得靠掺杂,或者门电压注入、光注入等。以掺杂为例,它必然导致杂质和缺陷增多,迁移率下降这一结果,于是就需要考虑二者的平衡与妥协。但在硅掺杂中,N型掺杂的磷和硅结构和能级是如此的匹配,迁移率几乎不会受到什么影响,这一因素就会被严重忽略。

以铜氧化物和铁基超导的合成历史看,人们并不知道哪种掺杂剂能达到像硅掺磷这样完美契合的程度,于是当时的做法就是穷举,把稀土那一排排的元素一个一个试,总有一个或一些,能达到结构和能级的最优匹配。

物质世界是如此复杂,掺杂剂也远不止元素。就像钙钛矿ABX3的A位就从原本的原子,变成了更为复杂的甲胺基,思路一下就打开了,复杂度当然也就打开了。这时候纯靠穷尽法的参数扫描、堆人力物力的研究思路,面对无穷多的化合物基团,显然力不从心。炼丹师这一职业于是横空出世。

我经常说,要实现宏观量子效应,最重要的就是局域化。但局域化不是万能的。原子内层电子都是局域的,但并不意味着它们能贡献超导电流。所以如何让局域电子离域化,或者如向院士讲的,sigma电子的金属化,也就是尽可能让局域电子待在费米面附近,而不是深深地埋在原子内层,才是炼丹的核心要义。

可爱呆把一维通道打散,再横向拼接的合成方案,其本质还是将一维的局域电子在横向离域的这个策略。有机超导的合成思路大多都是如此,就像局域的C60用碱金属来连接。

掺杂仍然是未来的优先解,但如何找到能级处在母体材料费米面附近的掺杂剂,是一个难题。另外,寻找平带材料、低维材料、拓扑材料,则是其它可能的选项,它们的目的也都是让费米面附近的态密度尽可能地大。

说室温超导难其实也是因为人类视角的局限。从宇宙的尺度看,地球的室温根本不是什么特殊的温度。从人类科技史的发展来看,人类发现超导现象也才一百来年,而人类使用半导体的历史已逾千年(虽然那时候不叫这个名字)。即使非传统超导,从铜基到铁基也不过二十年,中间还有像C60、二硼化镁等新超导体系的诞生,如果算上高压,其实发展是相当连续的,从未停止。从这个角度看,没有什么难的,突破随时都有发生的可能。